Gramicidin-based fluorescence assay; for determining small molecules potential for modifying lipid bilayer properties.

نویسندگان

  • Helgi I Ingólfsson
  • R Lea Sanford
  • Ruchi Kapoor
  • Olaf S Andersen
چکیده

Many drugs and other small molecules used to modulate biological function are amphiphiles that adsorb at the bilayer/solution interface and thereby alter lipid bilayer properties. This is important because membrane proteins are energetically coupled to their host bilayer by hydrophobic interactions. Changes in bilayer properties thus alter membrane protein function, which provides an indirect way for amphiphiles to modulate protein function and a possible mechanism for "off-target" drug effects. We have previously developed an electrophysiological assay for detecting changes in lipid bilayer properties using linear gramicidin channels as probes. Gramicidin channels are mini-proteins formed by the transbilayer dimerization of two non-conducting subunits. They are sensitive to changes in their membrane environment, which makes them powerful probes for monitoring changes in lipid bilayer properties as sensed by bilayer spanning proteins. We now demonstrate a fluorescence assay for detecting changes in bilayer properties using the same channels as probes. The assay is based on measuring the time-course of fluorescence quenching from fluorophore-loaded large unilamellar vesicles due to the entry of a quencher through the gramicidin channels. We use the fluorescence indicator/quencher pair 8-aminonaphthalene-1,3,6-trisulfonate (ANTS)/Tl(+) that has been successfully used in other fluorescence quenching assays. Tl(+) permeates the lipid bilayer slowly but passes readily through conducting gramicidin channels. The method is scalable and suitable for both mechanistic studies and high-throughput screening of small molecules for bilayer-perturbing, and potential "off-target", effects. We find that results using this method are in good agreement with previous electrophysiological results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alcohol's effects on lipid bilayer properties.

Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane propertie...

متن کامل

Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties

Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v))....

متن کامل

A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics.

Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, sug...

متن کامل

Fluorescence quenching of gramicidin D in model membranes by halothane

Inhaled anesthetics were introduced in surgery over a century ago. To this day, the molecular mechanism of anesthetic action remains largely unknown. However, ion-channels of neuronal membranes are believed to be the mostlikely molecular targets of inhaled anesthetics. In the study presented here, we investigated the interaction of a simplified ion-channel system, gramicidin, with halothane, a ...

متن کامل

Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.

The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptopha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2010